Nonuniform nonresonance conditions at the two first eigenvalues for periodic solutions of forced Lienard and Duffing equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Solutions of Periodic Boundary Value Problems for Impulsive Functional Duffing Equations at Nonresonance Case

This paper deals with the existence of solutions of the periodic boundary value problem of the impulsive Duffing equations: x′′ t αx′ t βx t f t, x t , x α1 t , . . . , x αn t , a.e. t ∈ 0, T , Δx tk Ik x tk , x′ tk , k 1, . . . , m, Δx′ tk Jk x tk , x′ tk , k 1, . . . , m, x i 0 x i T , i 0, 1. Sufficient conditions are established for the existence of at least one solution of above-mentioned ...

متن کامل

Three Solutions for Forced Duffing-Type Equations with Damping Term

Correspondence should be addressed to Yongkun Li, [email protected] Received 16 December 2010; Revised 6 February 2011; Accepted 11 February 2011 Academic Editor: Dumitru Motreanu Copyright q 2011 Y. Li and T. Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the...

متن کامل

Periodic solutions of forced Kirchhoff equations

We consider Kirchhoff equations for vibrating strings and elastic membranes under the action of an external forcing of period 2π/ω and small amplitude ε. We prove existence, regularity and local uniqueness of 2π/ω-periodic solutions of order ε by means of a Nash-Moser iteration scheme; the results hold for parameters (ω, ε) in a Cantor-like set which has asymptotically full measure for ε→ 0.

متن کامل

Periodic solutions of Lienard differential equations via averaging theory of order two.

For ε ≠ 0 sufficiently small we provide sufficient conditions for the existence of periodic solutions for the Lienard differential equations of the form x'' + f ⁢(x)⁢ x' + n2⁢x + g (x) = ε2p1 ⁢(t) + ε3 ⁢p2(t), where n is a positive integer, f : ℝ → ℝ is a C 3 function, g : ℝ → ℝ is a C 4 function, and p i : ℝ → ℝ for i = 1, 2 are continuous 2π-periodic function. The main tool used in this paper...

متن کامل

The Existence and Uniqueness of Solution of Duffing Equations with Non-C2 Perturbation Functional at Nonresonance

In recent years, many authors are greatly attached to investigation for the existence and uniqueness of solution of Duffing equations, for example, 1–11 , and so forth. Some authors 8, 11, 12 , etc. proved the existence and uniqueness of solution of Duffing equations underC2 perturbation functions and other conditions at nonresonance by employingminimax theorems. In 1986, Tersian investigated t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1982

ISSN: 0035-7596

DOI: 10.1216/rmj-1982-12-4-643